
Multimodal and Multitask Classification Using Artificial Neural Networks

Lucy Wang and Charlie Guthrie
New York University

Professor: Kyunghyun Cho

Abstract
We used brand name, product description, and
image to classify fashion inventory (clothing
and accessories) into 3 levels of nested cate-
gories. To find a model with optimal classifi-
cation accuracy, we experimented with the fol-
lowing: varying input data sources from text
to images to both; embedding text with a bag-
of-words representation vs. long-short-term
memory RNN; varying classification model
architecture. In our experiments, we achieved
the best result (> 99% accuracy for the top
category) by training the multitask feedfor-
ward neural network on both text and image
data.

1 Introduction

1.1 Business Problem
Spring is a fashion marketplace with a focus on per-
sonalized user experience where users can easily
search and discover products from over 800 brands.
Because Spring is a marketplace where information
is gathered from brands directly, there is no stan-
dardized product catalog across the platform. Some
brands categorize products differently from others
and some brands don’t provide complete informa-
tion about products.

To ensure that all information is complete and
consistent across the platform, the Spring team pro-
posed a solution to introduce an industry standard,
multilevel taxonomy to catalog the millions of prod-
ucts on the platform. The proposed solution involves
hiring a team of workers that manually categorizes
the products; however, this solution is not capital-
efficient and does not scale well when there is a large

number of products to process every day. To ad-
dress this issue, we propose an automatic classifier
to categorize as many products accurately as possi-
ble and only manually fill in the information for an
item when the classifier is not sufficiently confident.

Because the team has only recently started man-
ually tagging the data for Spring, we decided to use
a similar, longer dataset to train the models. Given
Nordstrom has the best product taxonomy in the in-
dustry, we obtained a complete dataset of more than
750,000 products from the retailer’s website.

1.2 Experiments/Hypotheses

We propose a series of experiments using a combi-
nation of feature sets, models, and data size to se-
lect the best model for identifying product taxon-
omy. The goal is to achieve the best accuracy with
the least complexity.

We have available two types of data for each prod-
uct: texts and images. We experimented with build-
ing the model using only text data, image data, and
both. We hypothesized that using both types of data
together would produce the best accuracy; however,
it might be sufficient to only use one type of data
given the simple nature of the problem. We also
hoped to learn the relative value of text and image
data.

Additionally, we tested text representation using
a long-short term memory (LSTM) recurrent neu-
ral network (Hochreiter and Schmidhuber, 1997)
and a feedforward neural network (MLP) on a bag-
of-words representation. We believed that product
categories would depend on the vocabulary of the
description more than word sequence. Therefore,



Figure 1: Complete model architecture. For each data point, brand name is recorded as an index and one-hot encoded. De-

scription gets cleaned and recorded as bag-of-words vector, or run through an LSTM model. We download the image and run it

through a pre-trained image recognition network to extract a feature vector. The vectors are concatenated and fed into a multi-task

multilayer perceptron with three outputs: one for each level of category. Variations omitted description text, images, or both.

we hypothesized that a feedforward neural network
would be sufficient for this task. Within the feed-
forward neural network, we also experimented with
two architectures to test for accuracy and comput-
ing efficiency. Within the recurrent neural network,
we experimented with sequenced predictions of each
category level using either the top prediction of the
previous category or the top 5 (beam search).

Finally, we experimented with different sizes of
training data to figure out the optimal amount of data
to use for building the model. This is an impor-
tant question for us to answer. Since we are using a
proxy dataset to build the model right now, it is best
to use labeled data at Spring when available. Our
goal here is to manually label the fewest products
necessary to train a model and then apply the model
to the rest of the products at Spring.

2 Data and Methodology

2.1 Training Data
The dataset of 750,000 Nordstrom products in-
cludes information such as the product name, prod-
uct brand, product description, and the correspond-
ing categories. Because this dataset was created
using a scraper, a significant amount of cleaning
needed to be done before it could be used for mod-
eling. For example, the product description often

contained information about the product category as
well. There were also a considerable number of du-
plicates in the form of small variations on a single
product, such as different colors or size.

In addition to product description and images, we
used the brand of each item as a predictor. There
were 2700 brands, which we one-hot encoded using
scikit-learn (Pedregosa et al., 2011). Starting with
brands as a baseline, we added text data, image data,
or both to complete the data set, depending on the
experiment being run. Again, see figure 1 for an
illustration of model architecture. See figure 1 for a
sample data point from the Nordstrom data set.

2.2 Target Labels

There are three levels of categories in the Nord-
strom product catalog. There are 19 unique values
in the first category, 40 unique values in the sec-
ond, and 270 unique values in the third. In total,
there are roughly 1,200 unique combinations of cat-
egories. This indicates that not all subcategories are
possible for all higher level categories. For exam-
ple, ‘Sweaters’ is not a viable subcategory of ‘Hair
Products’. For each inventory item, the goal was to
predict each level of category from the training data.
See table 1 for sample categories.



Category 1 Category 2 Category 3
men shoes sneakers

boots
oxfords
...

bottoms jeans
pant
short
...

... ...
women shoes sneakers

...
dresses dress

gown
... ...

toddler ... ...
... ... ...

Table 1: Sample categorizations of inventory items.

2.3 Train and Test Split

We randomly split the entire data set into training
and test set based on the product id. We reserved
25% of the data as the test set. In training, we left
10% of randomly sampled training data for valida-
tion.

3 Models and Architecture

We extracted image and text features separately,
then concatenated the resulting feature vectors and
fed into a multi-layer perceptron network. The pro-
cess is summarized in figure 1 and detailed below.

3.1 Extracting Features from Images

Here we made use of the Visual Geometry Group’s
(VGG) Convolutional Neural Net, which was pre-
trained on ImageNet for classification (Chatfield et
al., 2014), (Simonyan and Zisserman, 2014). . The
VGG CNN is a pretrained neural network that takes
in images and returns labels for those images. Show
it a picture of a bicycle, for example, and it will re-
turn a ranked list of likely labels, “bicycle” being
one of them. Rather than use the labels themselves
as inputs for our classifier, we chose to use the last
hidden layer, which contains much more informa-
tion. Taking advantage of this pretrained network
was much quicker and more accurate than it would
have been to develop an image-recognition model
ourselves.

Each item in our data set included an image url.
For each item, we downloaded the corresponding
image, resized and center-cropped it to fit the for-
mat of the VGG network. Once each image was pre-
processed, we fed it into the VGG network to extract
its feature vector to be input later into our model.

3.2 Extracting Features from Product
Descriptions

3.2.1 Bag of words for MLP
We employed a simple bag of words representa-

tion using the top 5,000 words and no term weights.
First, we built a dictionary of all unigrams in the
training set after tokenization and removing stop
words. The words in the dictionary are ordered by
overall term frequency. Each product description is
then turned into a sequence of word indices and we
only took the top 5,000 words. This cut off elimi-
nates all words that appeared only one time through-
out the training set. To train the model, each se-
quence is transformed into a vector of binary values
with length 5,000 using the tokenizer from the Keras
Python package (keras.io).

3.2.2 Sequencing for LSTM
We performed the same tokenization step here as

for bag of words. Again, we created a vocabulary
dictionary ordered by term frequency from the high-
est to lowest. We limited the vocabulary size to
50,000 and cut out the rest. Each sentence is padded
to length 100. Most product descriptions are well
within 100 words.

3.3 Hyperparameters and regularization
• LSTM Hyperparameters: For all LSTM

models we trained: 128 word embedding di-
mensions, 0.0001 learning rate, sigmoid non-
linear activation function. The LSTM models
are implemented using Theano (Bastien et al.,
2012; Bergstra et al., 2010).

• MLP Hyperparameters: For all MLP models
we trained: 256 embedding dimensions, 3 hid-
den layers, 0.01 learning rate, rectified linear
units. The MLP models are implemented using
Lasagne (Dieleman et al., 2015).

• Regularization: We used 50% dropout on all
hidden layers for both LSTM and MLP models,



and 20% dropout on the input layer to MLP.

• We did not tune any other hyperparameters
other than early stopping for LSTM train-
ing. All models were trained through SGD
over shuffled minibatches with adadelta up-
dates (Zeiler, 2012).

3.4 Classification Model from Extracted
Features

3.4.1 LSTM model architecture
We experimented with two variations of the

LSTM model. For each sub-category, the previous
category was concatenated with the product descrip-
tion and brand information and fed into the neural
network. In training, the actual category was used.
In testing, we tested using a hard prediction (taking
the top prediction for the previous category) and a
soft prediction (beam search through top 5 predic-
tions and taking the top 5 again for the next predic-
tion).

3.4.2 MLP model architecture
We tested two variations of the MLP model as

well. In the first, we used only brand and description
data and trained the outputs for the three categories
in parallel. The three predictions shared the same
hidden layers and cost function. Each had a separate
softmax layer mapping to corresponding number of
categories. In the second variation, we created three
models in sequence and incorporated the previous
category into the softmax layer for each subsequent
category. These models shared the same description
and brand embedding, but were heavily biased in the
softmax layer by the previous category information.

4 Results and Insights

There were several experiments being run to com-
pare. We tried varying the data to be used, varying
text embedding method, and varying the design of
our neural net classifier.

4.1 Text Data vs. Image Data
The first experiment was to examine the relative ef-
fectiveness of text data vs. image data for classifi-
cation. For this we compared accuracy of models
trained on the following data sets:

1. Brand Index only

Figure 2: Comparison of models using different data inputs.

The “Brands Only” model did not use text or image data. The

“Text” model used Bag-of-Words representation of product de-

scriptions.

2. Product Descriptions and Brand Index

3. Extracted Image Features and Brand Index

4. All of the above

Test accuracy results are summarized in figure 2.
To arrive at a single number for comparing models,
we took the average of classification accuracy across
all three category levels.

Brands alone (with no image or text data) had
predictably poor classification accuracy. Images
and text were comparable given sufficient data, but
10,000 training samples the text-only model had
lower accuracy. We suspect the image-only model
had an advantage over text given low amounts of
data, because the image-only model had the benefit
of getting informative features from the pre-trained
VGG network. Models using image and text data
together consistently had the best performance.

More data, predictably, yielded better results.
However, there were diminishing marginal returns
from increasing the amount of data, and increas-
ing training time and memory issues. Given that
the models did not improve substantially from 50k
to 100k data points, and given time constraints, we
opted to stop at 100,000 training samples.

In figure 3 we examine performance of the Text-
plus-Image model at individual category levels. As
a benchmark, we also included a naive model that
would simply classify according to whichever cate-
gory had a plurality of the training data; for exam-
ple, 56% of the training data was labeled as ‘women’



Figure 3: Looking at accuracy of the best-performing model for

individual category levels. As a benchmark, we also included a

naive model that would simply classify according to whichever

category had a plurality of the training data.

for category 1, so this Naive model always guessed
‘women’ for category 1. Our classifier had high-
est accuracy - 99% - for category 2. Accuracy for
categories 1 and 3 were close, except when fed lit-
tle data. Category 1 may have had ambiguities that
would not be obvious from the image or text alone:
for example a pair of pants could belong in the boys’,
men’s, women’s or girls’ sections. However, Cate-
gory 1 was the easiest to guess at random: it had the
fewest number of unique values (19) and 56% of in-
ventory was categorized as ‘women’. On the other
hand, category 3 had very specific labels, but had
268 possible values and the plurality - dresses - was
only 9% of the training data.

4.2 Text Models: LSTM vs. Bag-of-Words

Comparing models that used text data only: the re-
sults here indicate that word ordering is helpful for
classification, at least for a low number of samples
(see fig. 4).

4.3 Neural Net Design

Finally we compared performance on text data with
MLP using two approaches to this multi-tier clas-
sification problem. We tested the model perfor-
mances using 50,000 training data points. The mul-
titask model significantly outperformed the sequen-
tial MLP model, even though the latter model incor-
porated more information for each prediction, the
previous category (see fig. 5). However, this re-
sult makes a lot of sense. We built the sequential

Figure 4: Text-only model performance comparing three meth-

ods for embedding text. The results indicate that word ordering

is useful for classification, at least for a low number of samples.

Figure 5: The dependent model used the prediction from cat-

egory 1 to predict category 2, and both predictions to predict

category 3. But errors in predicting category 1 compounded, re-

sulting in worse accuracy for categories 2 and 3. The multitask

model with shared parameters performed consistently better.

model so that each model shares the same word em-
bedding layers. At the softmax layer, the previous
category is concatenated to the word vector. This
means the model is heavily biased by the previous
category, which would result in problems similar to
that of a greedy search. If the prediction of the pre-
vious category is wrong, it would lead to even more
wrong predictions on subsequent tasks.

5 Next Steps

There are several next steps we have in mind. First,
given the steady increase in accuracy by using more
data points, more experiments can be done on bigger
training sets. We only tested up to 100,000 training



data. Second, more analysis can be done on misclas-
sifications. We did not analyze the accuracy across
various categories. Given some categories are more
common and easier to identify than others, it would
be interesting to do more analysis on which cate-
gories the model works best on. This would also
help Spring to make decisions on which categories
to keep a close eye on when using the model to auto-
matically categorize products. Finally, we built the
LSTM models on 10,000 training data and sequen-
tially. It would be interesting to see how a multi-
tasking LSTM model would perform. Given the ex-
cellent performance of the multitasking MLP model,
we believe the LSTM model would produce equal if
not better results.

References

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian J. Goodfellow, Arnaud Berg-
eron, Nicolas Bouchard, and Yoshua Bengio. 2012.
Theano: new features and speed improvements. Deep
Learning and Unsupervised Feature Learning NIPS
2012 Workshop.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pas-
cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio. 2010. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for Scientific
Computing Conference (SciPy), June. Oral Presenta-
tion.

Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and
Andrew Zisserman. 2014. Return of the devil in the
details: Delving deep into convolutional nets. CoRR,
abs/1405.3531.

Sander Dieleman, Jan Schlter, Colin Raffel, Eben Ol-
son, Sren Kaae Snderby, Daniel Nouri, Daniel Mat-
urana, Martin Thoma, Eric Battenberg, Jack Kelly,
Jeffrey De Fauw, Michael Heilman, diogo149, Brian
McFee, Hendrik Weideman, takacsg84, peterderivaz,
Jon, instagibbs, Dr. Kashif Rasul, CongLiu, Britefury,
and Jonas Degrave. 2015. Lasagne: First release., Au-
gust.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780, November.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–
2830.

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556.

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR, abs/1212.5701.

Acknowledgments

We would like to thank Kyunghyun Cho and Kelvin
Xu for their guidance and support. In particular, we
could not have done this without endless hours of
debugging with Kelvin.


